Skip to main content

Gamma decay.

 Gamma decay

A nucleus can exist in states whose energies are higher than that of its ground state, as an atom can. An excited nucleus is denoted by an asterisk on its usual symbol. The excited nucleus return to its ground state by emitting photon whose energy corresponds to the energy difference between initial and final states in the transition involved. The photons emitted by the nucleus have energy in the range of several MeV and is traditionally called gamma decay.
Unlike, alpha decay and beta decay, the parent nucleus does not undergo any physical change in the process, daughter and parent nuclei are the same. Most of the time, gamma decay occurs after the radioactive nuclei have undergone an alpha or a beta decay. The alpha and beta decays leave the daughter nuclei in an excited state. From the excited state, the daughter nuclei can get back to the ground state by emitting one or more high energy gamma rays. 
The relationship between decay and energy level is shown in figure below
Beta decay and Gamma decay.
Beta decay and Gamma decay.

Thus gamma decay is the emission of electromagnetic radiation of an extremely high frequency i.e. very high energy, giving out excess energy in order to stabilize the unstable nucleus.
As an alternative to gamma decay, an excited nucleus can return to its ground state by losing the excitation energy to an atomic electron nearby and this process is known as internal conversion. 
The excited nucleus have short half life but some of them have long half life as long as several hours.

Comments

Popular posts from this blog

Mass defect, packing fraction and binding energy.

 Mass defect, packing fraction and binding energy: It was assumed that mass of the nucleus is equal to the mass of its constituents (i.e protons and neutrons). But experimentally it was found that the actual mass of the nucleus is less than the theoretical mass. Thus, the difference between the theoretical mass and experimental mass is called mass defect i.e ∆m={[Zmₚ + (A-Z)mₙ] - M} Where mₚ= mass of proton              mₙ= mass of neutron               M= actual mass of nucleus                Z= atomic number                A= mass number The ratio of mass defect and mass number (A) is called packing fraction (f) f = ∆m/A Thus packing fraction is the mass defect available per nucleon. The packing fraction explains the stability of the nucleus. The packing fraction may be positive, negative or zero. The positive value of packing fract...

Different kinds of beta decay.

 Different kinds of beta decay 1) Negative beta decay process: When there is excess number of neutrons in the nucleus, the neutron is converted into proton with the emission of electron and antineutrino particle and this process is called negative beta decay process. Negative beta decay. 2) Positive beta decay process: When there is excess number of protons in the nucleus, the proton is converted into neutron with the emission of positron and neutrino particle and this process is called positive beta decay process. Positive beta decay. 3) Electron Capture: When there is excess number of protons in the nucleus, sometimes the nucleus will absorbed the nearby electrons in the nearest electron orbital emitting neutron and a neutrino and this process is called electron capture. Electron capture. 4) Inverse beta decay: Inverse beta decay. Thus such kind of reaction in which neutrinos are absorbed to create some sort of beta decay is called inverse beta decay. Inverse beta decay confirm t...

LS coupling and jj coupling.

 Total angular momentum: The total angular momentum of an electron is the sum of the orbital angular momentum and spin angular momentum of the electron i.e Coupling Scheme Since an atom consist of large number of electrons having different orbital and spin momenta, Coupling scheme is necessary to obtain the resultant orbit and spin momenta of atom as a whole. There are two types of coupling scheme namely 1) LS Coupling 2) JJ Coupling. 1)LS Coupling: In this coupling the 'l' vectors of all electrons combine to form resultant 'L' vector and all the 's' vectors of these electrons combine to form resultant 'S' vector. Then the 'L' vector and 'S' vector undergoes vector addition to give resultant 'J' vector which represents the total angular momentum of an atom. Symbolically LS coupling is represented as This type of coupling is governed by the following principles: 1) All the three vectors (L,S and J vectors) are quantized. 2)L is an ...